
Identification of Common Challenges and Key
Factors in Software Architecture Using Grounded

Theory
Vinay Krishna

Agile Transformation and Consultation
SolutionsIQ India Consulting Services Pvt Ltd

Bangalore, India

Dr. Anirban Basu
APS College of Engineering

Somanahalli, Kanakpura Road
Bangalore, India

Abstract— Software Architecture plays vital role in developing a
system by addressing quality related aspects such as
performance, security, scalability etc. [1]. Architecture of a
software system has to ensure that design is able to support all
functional and non-functional requirements as well as able to
incorporate any changes requested by the customer. We
conducted a Grounded Theory study to investigate challenges
and possible solutions in Software Architecture involving 34
technical experts from 28 different software companies in India,
USA, Netherland and South Africa. We identify six key factors
that helps to bring agility in Software Architecture.

Keywords- Software Architecture; Plan driven; Agility;
Grounded Theory

I. INTRODUCTION

Software architecture and design is an important factor [1,
2, 3] in success and failure of any software [The art and
science of software architecture]. The architecture includes
non-trivial design decisions like business, technical etc.
Basically, Software architecture is not only concerned with
structure and behavior, but also with usage, functionality,
performance, resilience, reuse, comprehensibility,
economic and technological constraints and tradeoffs, and
aesthetics. In short software architecture focus on both
structure and vision [3].

There are two school of thoughts. In one case
architecture needs to be planned well in advance so that it
meet all functional and non-functional requirements
adequately. Eventually this requires big up-front design
and architecture. The other one believes on emergent
architecture and evolutionary design [4]. This requires
clear distinction between essential and accidental
complexity [5].

This raises a critical question: how do we determine the
complexity required in architecture? We found the answer
to this question through a Grounded Theory study that
involved 34 technical experts which includes enterprise
architects, software architects, technical leads, CTOs,
COOs, and consultants from 28 different software
companies in the India, USA, Netherland and South
Africa. We found the six strategies that helps in
determining complexity in architecture: ‘Focus on
immediate and visible business value’, ‘Collaboration’,
‘Communication’, ‘Continuous improvement’, ‘Art of
simplicity: Keep it simple’ and ‘Feedback mechanism’.

II. RESEARCH METHOD

A. Grounded Theory

Grounded Theory (GT) is becoming a popular research
method in Software Engineering [6]. Grounded Theory
(GT) is a systematic research method that stresses the
generation of theory derived from systematic and rigorous
analysis of data. GT was developed by two sociologists,
Barney Glaser and Anslem Strauss [7]. GT is a complete
research method as it provides concrete procedures that
cover all stages of research including sampling
participants, data collection, data analysis, use of literature,
and write-up [6]. Mainly it focuses on surfacing the main
concerns expressed by majority of participants. Further it
helps in generating the theory to explain how they go about
resolving this main concern. The main concern could be
any aspect of the field that the researcher is interested in
exploring that is particularly important (and even
problematic) for those involved.

We chose GT as our research method because it is
suitable to be used in areas that are under-explored or
where a new perspective might be valuable, and not much
work is done in this area. The other reason is, GT allows
researchers to study human and social aspects in the
context of solving problems, and human interactions plays
major role in software architecture [7, 8]. We used Glaser’s
approach and commenced our research with open ended
discussion. As per GT we should not start a GT study with
a specific research question. This restricts us from leading
to preconceived ideas or hypotheses of the research
phenomenon [9, 10]. As per Glaser both problems and its
key concerns emerge in the initial stages of data analysis
[9, 11].

B. Data Collection

Theoretical sampling is the process of data collection in
GT. It is used for generating theory whereby the analysts
jointly collects, codes and analyzes his data and decides
further what data to collect and where to find them [7]. We
interviewed technical experts such as enterprise architects,
software architects, technical leads, CTOs, COOs, and
consultants, from different organizations from various
countries such as USA, Netherland, South Africa and India.
We conducted face-to-face, Skype and telephonic, one-on-
one interviews with our participants using open-ended

Vinay Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 170-173

www.ijcsit.com 170

questions. Initially we prepared a set of questions for the
initial interviews to have a smooth discussion with the
participants. The interview questions focused on the
challenges that participants faced in developing software
architecture, and the strategies adopted to overcome them.

Interviews were conducted at a mutually agreed time and
location. In most of the cases it lasted for at least an hour.
We voice-recorded all the interviews with consent from the
participants. The reason for voice-recording was: it helped

us to just concentrate on the conversation and understand
participant’s main concerns as we don’t need take a note of
our conversation.

We analyzed the initial interviews and few key concerns
emerged. We framed research questions based on the
emergent key concerns and further conducted in-depth
investigation on them and presented the initial findings in
different papers [12]. In this paper we investigate in-depth
how we have applied Grounded Theory.

C. Participant and Project Details

Table 1: Details of participants (Position: Enterprise Architect (EA), Chief Technical Officer (CTO), Software Architect
(SA), Chief Information Officer (COO), Engineer Director (Eng Dir), Technical Consultant (Tech Cons) and Technical Lead
(Tech Lead).

Participants Position Location Group involved Project Duration (In months)

P1 EA South Africa 4 6

P2 CTO US 8 8

P3 EA India 5 12

P4 Eng Dir India 5 16

P5 SA India 4 19

P6 COO Netherland 8 12

P7 SA US 5 15

P8 EA US 5 9

P9 Tech Lead India 3 12

P10 Tech Cons India 6 6

P11 SA India 6 9

P12 EA US 9 12

P13 EA South Africa 7 16

P14 Tech Lead India 5 9

P15 Tech Lead India 3 5

P16 SA India 5 6

P17 SA India 4 8

P18 Eng Dir US 8 12

P19 SA India 5 6

P20 SA India 4 7

P21 SA India 5 8

P22 SA India 7 9

P23 SA India 5 6

P24 SA India 4 11

P25 SA India 6 15

P26 SA India 4 9

P27 CTO India 6 14

P28 Eng Dir US 9 8

P29 Tech Cons India 4 10

P30 Tech Cons India 4 6

P31 SA India 3 7

P32 SA India 5 11

P33 SA India 4 14

P34 SA India 6 10

Vinay Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 170-173

www.ijcsit.com 171

We interviewed 34 participants with various roles
across the globe.

Table 1 depicts participant and other important details.
Multiple groups were involved from 3 to 9, and project
duration varied from 5 to 14 months though some projects
were still ongoing when we interviewed the participants.
Due to privacy and ethical consideration, we will only
identify our participants using the codes P1 to P40

D. Data Analysis

We transcribed the interviews and analyzed it using
open coding [10]. Open coding breaks down, examines,
compares, conceptualizes and categorizes the data [13]. We
apportioned a code or a summary phrase to each key point.
Using Grounded Theory's constant comparison method
[14], we constantly compared each code with the codes
from same interview, and those from other interviews. The
codes that are related to a common theme were grouped
together to produce a second level of abstraction called a
concept.

As we continuously compared codes, many fresh
concepts emerged. These concepts were themselves
analyzed using constant comparison method to produce a
third level of abstraction called a category.

III. RESULTS

A. Challenges

Figure 3 shows the concepts ‘Many stakeholders’,
‘Large amount of data’, ‘Overlap in requirements’,
‘Scalability’, ‘Match the pace of business growth’ and
‘Incidental complexity’ that gave rise to the category
Architectural Challenges in large/critical applications.

Figure 1. Challenges

A1. Many stakeholders

It’s a very common problem in case of large/critical
applications. It creates more chaos, confusion in terms of
requirement. It has direct impact on the decision making
process which causes unstable architecture, disagreement
about approach (top-down, bottom-up) and large amounts
of noise.

A2. Large amounts of information

Handling large amounts of information is important,
since it grows very fast. It needs extra care as there is
possibility of noise in information. Unclear information
leads a wobbly architecture.

A3. Large amounts of information

Since multiple groups/departments existing, noise is
likely to be present in requirement. Many cases redundant
requirements are found. Eventually it’s difficult to attain a
stable architecture with noisy requirements.

A4. Scalability

Most of the time it needs to scales the application in
terms of data and function throughout the application
development. It’s most challenging task. Participants
explicitly discussed the scalability where application
struggle to handle growing data and new need.
A5. Match the pace of business growth

The only factor which is constant in any enterprise is
change. A common belief is architecture must be able to
handle it gracefully which is really challenging.

A6. Incidental complexity

It is also known as “Accidental Complexity”. It arises
from choices made in terms of technology, hardware etc. to
be used. Essentially anticipation introduces more incidental
complexity. In large-scale software, though, removing
accidental complexity while retaining the solution to the
essential complexity is challenging.

B. Recommendations

Figure 4 shows the concepts ‘Drive immediate business
value’, ‘Collaboration’, ‘Communicate’, ‘Continuous
improvement’, ‘Art of simplicity: Keep it simple’ and
‘Feedback mechanism’ that gave rise to the category
Architectural Improvement in large/critical applications.

Figure 2. Recommendations

B1. Focus on immediate and visible business value

“.. to address accidental complexity, need to just focus
on visible and immediate business value…”– P30,
Technical Consultant

Vinay Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 170-173

www.ijcsit.com 172

It’s important to deliver immediate business value.
There is need to prioritize the requirement based on time to
market and value. Based upon this participants suggested
to do just enough architecture.

B2. Collaboration

“We have defined periodic steering committee reviews to
address any high level issues and adapt as required.” –
P11, Software Architect
“We found that frequent communication fosters good
understanding between project team and management” –
P3, Enterprise Architect

Participants encouraged collaboration with all
stakeholders in order to reduce noise in requirements. They
explicitly discussed the ‘Collaboration’ where all
stakeholders strive to interact and perform as one team.

B3. Communicate

“To build trust, understand correctly and remove
ambiguity, it’s necessary to speak in the language of
business by technical team…” – P6, COO.
“.. the only way to understand business is - Communicate,
communicate and communicate .” – P8, Enterprise
Architect

Participants felt that communication plays vital role to
bridge the gap between business and technology. They
emphasized to communicate in the language of business.
This is good way to build strong trust.

B4. Continuous improvement

“Always Measure, adapt and become the best” – P2, CTO.
Develop mechanism to capture knowledge and share

with others. There are various ways to capture and share
but the ultimate aim is to keep improving.

B5. Art of Simplicity: Keep it simple

“We identified essential aspects of the system and
produced lean solutions. Not technology was used unless it
was critical. For example we did not introduce a
complicated rules system as the rules we had were simple”
– P3, Enterprise Architect.
“We always ask to prove the need in case someone is going
to choose any third part tool/new hardware, before
deciding it” – P13, Enterprise Architect

Similar voice was found in other participants views.
This is one of the effective ways to keep away the
incidental complexity from essential complexity.

B6. Feedback mechanism

“Define mechanism to encourage early feedback from end
user” – P6, COO.

Feedback helps to gain confidence for any decision
taken and it also helps to improve it in lots of other
dimension that might have been ignored inadvertently.
This process encourages adoption over anticipation and
eventually paves way for evolutionary architecture.

CONCLUSION

We used Grounded Theory study to investigate common
challenges and key factors in software architecture and
involved 34 technical experts from 28 software companies
in India, USA, Netherland and South Africa. Through our
analysis, we found tech experts value a lot on six items:
Focus on immediate and visible business value,
Collaboration, Communication, Continuous Improvement,
Art of simplicity – keep it simple and Feedback
Mechanism.

REFERENCES
1. SEI, “Defining Software Architecture”, [online] Available:

http://www.sei.cmu.edu/architecture
2. M. Fowler, “Who needs an architect”, September 2003, IEEE

Software
3. S. Brown, “Is Software Architecture important” in “Software

Architecture for Developers”, Lean Publishing, 2015
4. P. Kruchten et al, "Agility and Architecture: Can They Coexist?",

March/April 2010, IEEE Software
5. N. Ford, “Evolutionary architecture and emergent design:

Investigating architecture and design”, February 2009, IBM
Developer Works. [online] Available:
http://www.ibm.com/developerworks/library/j-eaed1/

6. R. Hoda, J. Noble & S. Marshall, 2011 "Grounded Theory for
Geeks", School of Engineering and Computer Science. Victoria
University of Wellington, New Zealand. [online] Available:
http://www.hillside.net/plop/2011/papers/E-13-Hoda.pdf

7. B.G. Glaser, A. L.Strauss, “The Discovery of Grounded Theory:
Strategies for Qualitative Research”. Sociology Press, Aldine,
Chicago (1967)

8. K. Charmaz, “Constructing Grounded Theory”, Sage Publications,
2006

9. B. Glaser, "Doing Grounded Theory: Issues and Discussions",
Sociology Press, Mill Valley, CA (1998)

10. C. Urquhart, H. Lehmann, M. D. Myers, "Putting the ‘theory’ back
into grounded theory: guidelines for grounded theory studies in
information systems", Information Systems Journal 20(4) (2010)
357–381

11. B. Glaser, "Basics of Grounded Theory Analysis: Emergence vs
Forcing", Sociology Press, Mill Valley, CA (1992)

12. V. Krishna, A. Basu, “Software Architecture for large/critical
applications”, Software Engineering (CONSEG), 2012 CSI Sixth
International Conference, Available: IEEE Xplore

13. A. Strauss, J. Corbin, "Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory", Sage
Publications (1998)

14. B. Glaser, "The constant comparative method of qualitative
analysis", Social Problems 12(4) (1965) 436–445

Vinay Krishna et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 170-173

www.ijcsit.com 173

